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We consider heat conduction in a periodic body which is composed of fmitely 
many different components. The effective conductivity is represented in terms of 
skew Brownian motion. The representation formula is a fluctuation-dissipation 
relation. The dissipation term in this formula is related to the transmission of 
heat through the surface separating the different components of the body; it is 
described by the skew reflections of Brownian motion at these surfaces. The 
problems caused by the discontinuity of the microscopic conductivity are 
handled in the framework of Dirichlet forms. 
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I N T R O D U C T I O N  

We consider  a hea t -conduct ing  body  in Eucl idean space R d, d~> 1 . Let 
a(x)  be the conduct ivi ty  in x ~ R  a, where a: Rd--* [0, ~ )  is a given function 
varying on a microscopic  scale. Suppose the body  is per iodic  and com- 
posed of finitely many  different components ,  i.e., we assume the function a 
is periodic and takes on finitely many  different values. The conduct ivi ty  of  
the body in the average,  the so-called ef fect ive conductivi ty,  is a constant  
independent  of  x. It is given by a tensor  ~ = (a,7)1 ~i . j~d,  which is roughly 
defined as follows. Denot ing  by ek ( 1 <~ k <<, d)  the unit vectors of an or tho-  
normal  basis in R a, one has 

40.= average heat  flux in direct ion ej p roduced  by an average 
negative tempera ture  gradient  e~ ( 1 ~< i, j ~< d) (0.1) 

The problem of  gett ing a managable  expression for ~ has a long history; 
see, for example,  ref. 11, where the l i terature up to the year  1926 is 
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surveyed. More recently a spectral representation of the effective conduc- 
tivity has been found(7); furthermore, in the context of the general theory 
of homogenization of differential operators (~7~ a variational characteriza- 
tion of ~ is known. From this variational principle one easily obtains, for 
example, that ~ is bounded below by the harmonic mean and above by the 
arithmetical mean of the microscopic conductivity. However, it is not easy 
to visualize geometrically what kind of mean ~ precisely is and how it 
results from the heat transmission through the surfaces which separate the 
different components of the body. In this paper we want to give such a 
visualization by means of an explicit representation of ~ in terms of the 
paths of Brownian motion. 

To explain this representation we consider the heat equation 

1 
O--u(t,x)+~div(-a(x).gradu(t,x))=O (t>O,x~R d) (0.2) 
Ot 

with a random (not necessarily periodic, only ergodic) conductivity 
{a(x),xsRd}. Under smoothness assumptions on a(x) it is known 114'12~ 
that the diffusion process corresponding to (0.2) has an effective diffusivity 
which coincides with the effective conductivity defined by (0.I). In the case 
of smooth conductivities it was furthermore observed in ref. 5 that time 
reversibility of the diffusion process entails a Green-Kubo formula (cf. 
pp. 177 in ref. 16) for the effective diffusivity. 

In the following we want to prove an analogous formula for the case 
when a(x) is discontinuous. For simplicity we assume that a(x) has only two 
different values a§ and a_  ; we use the notation D• = {x ~ Rd: a(x)= a• }. 
Then the diffusion process corresponding to (0.2) is the skew Brownian 
motion { X(s), s >1 0}, which may be described heuristically as 

i ( . ) =  Brownian motion with variance a •  if X(.) is in the 
interior of D e ;  at the boundary OD e the path I ( . )  will 
be reflected into D• with probability a •  +a§ (0.3) 

Henceforth we write SBM as abbreviation for skew Brownian motion. The 
term "skew" refers to the fact that the reflection probabilities a• + a§ ) 
are different from 1/2. In dimension d =  1, SBM was introduced by It6 and 
McKean (ref. 9, p. 221). 

In the following we assume a(x) to be periodic (an extension of the result 
to nonperiodic media is discussed in Section 7 below) and we will show that 

can be represented in terms of SBM roughly speaking as follows: 

a = (arithmetical mean of a) 

-(dissipation of SBM, caused by the skew reflections at OD• ) (0.4) 
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The first term on the right side of (0.4) corresponds to the average heat 
conduction in Ra\aD• The second term, which is related to the 
transmission of heat through the surface aD•  will be described by the 
autocorrelation of the boundary process of SBM. Relation (0.4) is a 
fluctuation-dissipation relation for SBM (Green-Kubo formula). 

In order to prove (0.4) we use the framework of Dirichlet forms. (6) 
Following the work of Bass and Hsu, c2~ where the usual reflecting 
Brownian motion is considered, we derive a stochastic differential equation 
for SBM analogous to the Skorohod equation. From this we get (0.4) by 
using time reversibility of SBM as in ref. 5. After submission of this note 
the author obtained a preprint (~3~ which is also based on Dirichlet form 
techniques. In ref. 13 invariance principles for diffusion processes with quite 
general random and discontinuous coefficients are derived. 

The organization of this paper is also follows. In the next section the 
precise definition of SBM is given an the main Theorem is stated. After 
sketching the plan of its proof in Section 2 and collecting some auxiliary 
results about SBM in Section 3, we give the detailed proof of the Theorem 
in Sections 4-6. In Section 7 we conclude with some comments on the 
Theorem and on related questions. 

1. F O R M U L A T I O N  OF THE T H E O R E M  

1.1. Geometry  of the Medium 

Let C be a compact subset of R a, d/> 1, contained in the open unit 
cube (0,1)a; the boundary a c  is assumed to be Lipschitz continuous (cf. 
ref. 3, p. 491). We denote by v=(vl  ..... va) the unit normal vector at the 
boundary OC, pointing to the outward of C, and by a the surface measure 
on OC. Brackets ( . )  denote averaging with respect to the Lebesgue 
measure on [ 0,1 ] a. We periodize C and use the notation 

o =  k) (n+C) 
n ~ Z  d 

D+ = Ra\D_ 

In particular, OD• is the surface which separates D_ form D+.  

1.2. Definit ion of the Effective Conduct iv i ty  

Given two numbers a+/> 0 and a_  >/0, the microscopic conductivity 
of the body is defined by 

a = a _  �9 ln_ + a +  �9 lo+ (1.1) 

822/80/1-2-9 
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and its arithmetical mean is given by 

( a>  = ICl" a + (1 - ICI)" a+ (1.2) 

where I CI is the volume of C. 
The effective conductivity d = (~0.) ~ < ;.J < d is defined as follows. 

Case I. a + > 0 ,  a _ > 0 .  Then 

0u, 1 

= o  _ c3x j+a+.  , l<~i,j<~d (1.3) 
o. 13~\c \ OxJ 

where u;: R a - ,  R is continuous and has the following properties: 

Aui(x) = O, x q~ OD • (1.4) 

u~_~_ Ou; 
a _ .  (x) = a + .  0--~-+ (x), x ~ O a •  (1.5) 

--[ui(x +ek ) -u i ( x ) ]  =Jgk, 1 <~k<~d (1.6) 

Here we have used the notat ion 

0___g_g (x) = lim g(x + ev) - g ( x )  
c3v + ~1o e 

__Og = lim g ( x ) - g ( x - e v )  (g: R a ~ R ,  xeOD•  
Ov__ '(x) ~o 

Equations (1.4) and (1.5) are understood in the weak sense (cf. ref. 3, 
p. 503). 

Case II. a+ > O, a_ =0.  In this case we additionally assume that 
d >  1 and that D+ is connected. We define 

(1.7) 
",to [- ~3~\c \ OxJ 

d u = a  + 

where u;: 13+ ~ R has the following properties: 

Aui(x) =0, xq~OD + (1.8) 

au ~ 
- - ( x ) = 0 ,  xEaD+ (1.9) 
av+ 

--(U;(X+ek)--Ui(X)) =J/k ,  1 <~k<~d (1.10) 
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1.3. D e f i n i t i o n  of  S B M  

Case /. a+ > O, a_ > O. In this case the definition of SBM is based 
on the Hilbert space 

H ' (R  a) = {feL2(Ra): IVfl e L2(Ra)} (1.11) 

equipped with the scalar product 

( f  , g)n,(Ra) = ( f  , g) + g ( f  , g) (1.12) 

where 

(f '  g) = ~Ra dx f (x)  g(x) is the usual scalar product on L2(R a) 

and the Dirichlet form g is given by 

g( f ,g)=�89 fR dxa(x) Vf(x),Vg(x) for f ,  g e H ' ( R  a) (1.13) 

The SBM {X(s),s>~O} is then defined as the Markov process which 
corresponds to the Dirichlet space (H~(Ra), g), i.e., if {Ps, s~>0} denotes 
the transition semigroup of SBM, then 

{ f e L Z ( R a ) : f i m l ( f - - P , f , f ) < o o }  = H ' ( R  a) (1.14) 
t ~ o t  

and 

lira 1 ( f _  p , f ,  g) = #( f ,  g) 
t~ot  

for f ,  g e H l ( R  a) (1.15) 

The transition density of SBM is denoted by p~(x, y) (s > 0; x, y ~ Ra); it is 
defined pointwise for all x, y e R  a (cf. Lemma 2 in Section 3). The SBM on 
the torus, i.e., the projection of {X(s), s~>0} on Ru/Z d, is denoted by 
{ X(s), s 1> 0} and its transition density by/~s(x, y) (s > 0; x, y e Ru/Za). 

Case /I. a + > 0, a_ = 0, d > 1. In this case SBM is reflected Brownian 
motion in the domain D+. Its definition is based on the Hilbert space 

H'(D + ) = { feLl(D+):  IV/I eL2(D+)} (1.16) 

equipped with the scalar product 

(f ,  g)n,tR~)= (f ,  g) + g ( f ,  g) (1.17) 
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where 

(f '  g) = ~O§ dx f (x)  g(x) 

is the usual scalar product on L2(R a) and the Dirichlet form 8 is given by 

r 1 8 9  dxVf(x) .Vg(x)  for f ,  geHl(D+) (1.18) 
~ D  + 

The reflected Brownian motion in D+ is then defined as the Markov 
process which corresponds to the Dirichlet space (H'(D§ 8). Its transi- 
tion density and the transition density of the reflected Brownian motion on 
the torus are denoted by ps(x, y) and/~s(x, y), respectively. These densities 
exist pointwise (see ref. 3, Section 4). 

Now we are ready to state the main result. 

Theorem.  In cases I and II  the effective conductivity has the 
representation 

,~u= (a)  

Io 
Romarks. 

�9 6 o . - � 8 9  § - a _ )  2 

ds ~f a(dy) a(dz) 5,(y, z) vi(y) vj(z), l <<.i,j<<.d (1.19) 

(i) For any initial distribution of X(0) on the cube [0,1 ] d 
one can show that e. X(t/e 2) converges weakly as e ~ 0 to Brownian motion 
on R d with covariance ~ in case I and with covariance ( 1 - I CI)-,. a in 
case II. Given the proof of the above Theorem, it is not difficult to obtain 
such an invariance principle. In the present case of periodic conductivities 
even the old-fashioned method of characteristic functions applies (e.g., 
along the lines of ref. 4). See ref. 13 for much more general invariance 
principles. 

(ii) The Theorem was announced in ref. 10 (with a slightly different 
normalization of d in case II), and in case II  a proof was sketched in this 
previous note. In the following we concentrate on case I, i.e., we assume 
a+ > 0 and a_  > 0 henceforth. 

2. PLAN OF THE PROOF 

Let a+ > 0 and a_  > 0 be given. According to the context, a will 
denote the surface measure on aC or on a D •  respectively. If the initial 
distribution of X(O) is Lebesgue measure on [0,1 ],1, expectation is denoted 
by E; if 2"(0)= x, expectation is denoted by Ex (x e Rd). 
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The theorem is based on the following three propositions, whose 
proofs can be found in Sections 4-6. 

Proposition 1. There exists a standard Brownian motion {B(s), 
s t> 0} on R d such that 

X( t )=  X(0)+  [" B(ds) ~ ( X(s) ) + � 8 9  [" L(ds) v(X(s) ), 
Jo Jo 

t>~O 

(2.1) 

where L(t) is the boundary local time of SBM at OD e . 
The precise definition of the local time L is given in Lemma 2 in the 

next section. Equation (2.1) is the analog to the Skorohod equation for 
reflecting Brownian motion. For the proof of Proposition 1 we follow 
ref. 2 and use Fukushima's decomposition of additive functionals of regular 
Dirichlet processes. 

Proposition 2. The asymptotic covariance of SBM equals the 
effective conductivity, i.e., 

lim 1E[Xt(t). Xflt)] =t~ U, 1 <~i,j<~d (2.2) 
, - ~  t 

In order to show (2.2) we look for a periodic function F: R d ~  R d such 
that X(s) + F(X(s)), s >/0, is a martingale.(12) The quadratic variation of 
this martingale can be computed in the framework of Dirichlet spaces, 
which immediately will yield (2.2). 

Proposition 3. The asymptotic covariance of SBM is given by 

lim 1E[Xi(t ) . Xflt)] 
I ~ o O  t 

1 = ( a }  .6U--~ (a+ --a_) 2 

. f :  ds ffa(dy) a(dz)ff}y,z)vi(y)vj(z ) 1 <<,i,j<~d (2.3) 

The proof of (2.3) relies on Proposition 1 and on the time reversibility 
of SBM. The importance of symmetry properties of the underlying diffusion 
process was already observed in ref. 5: from these properties one obtains 
the vanishing of the mixed terms 

1E[Xi(t).I'L(ds)vj(X(s))] O, l<,i,j<~d lira 
ao 
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The Theorem follows from Propositions 2 and 3. In summary one 
obtains the representation (1.19) by computing the asymptotic covariance 
of SBM in two opposite ways: on the one hand one calculates it by an 
elimination of the dissipation of SBM and by computing the "costs" of this 
elimination (proof of Proposition 2); on the other hand one calculates the 
dissipation of SBM directly by using symmetry properties of SBM 
(Proposition 3). Equating the results obtained in these two ways yields the 
Theorem. 

3. SOME PROPERTIES OF SBM 

Lemma 1. Let Co(R a) be the space of continuous functions on R a 
with compact support, equipped with the supremum norm, and let H ' ( R  a) 
be equipped with the norm (1.12). Then H'(Ra)c~Co(R a) is dense in 
Ht(R a) and in C0(Ra). 

Proof. Similarly as in ref. 3, Section 4. 

L e m m a  2. The SBM has the following properties. 

(i) The transition density is defined pointwise for all x , y ~ R  a 
(s > 0) and (s, x, y) ~--~ps(x, y) is continuous on (0, 0o) x R a x R a. 

(ii) F o r s > 0 o n e h a s  

p~(x,y)=p~(y,x), x , y ~ R  a 
and 

(iii) 

(3.1) 

ffs(x, y) > O, x, y e Rd/Z d (3.2) 

There exists a unique continuous additive functional L of SBM 
such that for all ~ > 0 and for all x s R d 

Ex f :  L(ds) e - ~ ' = f :  ds e -~  f a(dy)ps(x,y) (3.3) 

Proof. Similarly as in ref. 3, Section 4. 

L e m m a  3.  There exist constants C <  0o and 7 > 0 such that 

sup [f fs(x,y)- l l<~C.e -~''~, s>~l (3.4) 
x,  y ~ R d / Z  d 

Proof. Lemma 2(i) and (ii) imply 

inf /~l(X, y) > 0 
X, y ~ R d / z  d 

From this one obtains (3.4) by standard arguments (see, e.g., ref. 4, proof 
of Theorem 2.15). 
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4. P R O O F  OF P R O P O S I T I O N  1 

We use the notation 

Qk={X=(Xt , . . . , xa)~Rd:- -k<xi<kfor  l<<,i<~d}, k = l , 2  .... (4.1) 

and 

0, k = o 

Tk= inf{t>O:X(t)eaQk}, k>~l (4.2) 

Lemma 4. For k ~ N there exist standard Brownian motions B k on 
R a and continuous additive functionals L k of SBM such that 

X(t ^ Tk)-X(O)= Bk(ds) x/~(X(s)) 

+ �89 - a _ ) -  Lk(ds) v(X(s)) (4.3) 

and 

i2 ^ rk Lk(ds) Ioo• = Lk(t ^ Tk), t~>0 

for all k e N with 2"(0) ~ Qk. 

Proof. In three steps: 

Stop 7. Application of Fukushima's decomposition. Because of 
Lemma 1, the Dirichlet form corresponding to SBM is regular; hence we 
can apply the results of ref. 6, Chapter V, and we obtain the following (cf. 
also ref. 2, p. 1009). To a n y f ~  Co2(R d) there exists a continuous martingale 
{MY(t), t >t 0} with MI (0 )=  0 and a continuous additive functional {Nf(t), 
t >/0} of bounded variation so that 

f (X( t ) ) - - f (X(O))=Mf( t )+Nf( t ) ,  t>~O (4.4) 

M f has the quadratic variation 

(Mf ,  Mf>,= dsa(X(s)) IVfl2(X(s)), t~>0 (4.5) 

The measure/21 associated to N y is characterized by 

�89 . fn dx Vf(x). Vv(x) + �89 . ~o dx Vf(x). Vv(x) 
- + 

= IR p1(dx) ~(x) (4.6) 
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for all v E HI(Rd), where fi(x) is a quasicontinuous modification of v. Since 
the boundary of D• is Lipschitz continuous, we can apply Green's formula 
and we obtain 

1 Of 
IJ(dx)= - - ~ a ( x ) . A f ( x ) . 2 ( d x ) + ~ ( a + - - a _ ) . - ~ v ( X ) . a ( d x )  (4.7) 

where Of/Ov denotes the derivative of f i n  the direction of the normal vector 
v, 2 is the Lesbesgue measure on R a, and a the surface measure on 3D+. 

Step 2. Application of (4.4) to the truncated coordinate functions. 
For k E N and 1 ~< i ~< d we define 

f k i ( x )=x  i for XEQk (4.8) 

and continue this function to R a in such a way that it belongs to Co2(Rd). 
We apply the decomposition (4.4) with f~  ( k e N ,  1 ~< i<~d) and use the 
abbreviation 

M k = (M~ ..... M~) with M~ = MA, 
N k k k k k e N ,  l<~i<~d (4.9) 

= (N l ..... Na) with N i = N ~ ,  

For all k E N with X(0) E Qk we obtain 

X ( t A  Tk ) - -X (O)=Mk( tA  T k ) + N k ( t A  Tk), t>~O (4.10) 

By means of the multidimensional analog to (4.5) and by (4.8) we have 

f~ 
^ T k  

( k k 60.. ds a(X(s)),  t >1 0 M ; , M ;  ) , ^  Tk= (l<~i,j<~d, k e N )  

(4.11) 

For brevity we write 

. I = k  N ~ = � 8 9  .~/k+gN, ( k e N ,  1 <<.i<~d) (4.12) 

where the measures associated to Nk and ~'~, respectively, are given by 

{~*. <-> a 
a.f~. 

' 3 v  (4.13) 
~k i ~ --a(x) . Af(x) .  2 

Denote by 

r [.~ ai(~" ljf;/av)2 ( X(s) ), Lk(t) = ,=, Nk(ds) ~a=, k E N (4.14) 
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Because of (4.13), the measure associated to L k is tr, and we have the 
representations 

, 

,q~(t) = ~i Lk(cls) -~v IX(s)) 

~ ( t )  = --Io ds a(X(s)). Af~(X(s)) 

(4.15) 

Let . t (0)~ Q~. Since s <~ Tk implies 

Of~ (X(s)) = v,(X(s)) 
Ov 

for X(s)EOD+_, and Afki(X(s))=O 

we obtain from (4.10), (4.12), and (4.15) 

X(t ^ r k ) - X ( O ) = M k ( t  ^ Tk)+�89 

�9 Ii^rkLk(ds) v(X(s)), t>~O (4.16) 

Step 3. Time change. From (4.11) we want to obtain a represen- 
tation of M k as an integral with respect to Brownian motion. For this 
purpose we apply the following result. 

L e m m a  5. Let ~, ,  t ~> 0, be the filtration generated by the SBM and 
let 

S , = i n f  r: dsa(X(s))>t , t>~O (4.17) 

Let furthermore R be a stopping time with respect to the filtration ~s,, 
t>~0, and {M(s), s>~0} be a continuous g-mar t inga le  on R e with 
M(0) = 0 such that 

(Mi,  Mj)s,^ =fiu.(t A R), t>~O (4.18) 

Denote by /~  a standard Brownian motion on R a which is independent of 
M. Then the following holds: 

B( t )=M(S , ^R)+  B ( t ) - B ( t  ^ R), t>~O (4.19) 

is a standard Brownian motion, and M can be represented in the form 

f~ ŜR M(t ^ SR) = B(ds) x/Ca (X(s)), t ~> 0 (4.20) 
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Proof. For R - oo Lemma 5 essentially follows from Theorem 1.6 in 
ref. 15, p. 170. Combining this Theorem with the result of Exercise (3.28) 
in ref 15, p. 149-150, we obtain that 

M ( S t ^ R ) + B ( t ) - B ( t A R  ), t>~O 

is a standard Brownian motion on R d. In order to see that this implies the 
representation (4.20), we choose to given t > 0  the time t' so that t =  S,,. 
Then we get from (4.19) 

M(t A SR)=M(Sc n SR)=M(S,, ^ R) = B(t' A R) 

=B(t '^ISo"dSa(X(s)))  

= dsa s 

and the last expression can indeed be represented as an integral with 
respect to Brownian motion as in (4.20). This proves Lemma 5. 

In order to apply Lemma 5 to (4.11) we define 

Tk = dsa(X(s)), k e n  (4.21) 

For k e N we then have 

ST~ = Tk and S, ^ Tk = S, ^ STk = S, ^ Tk 

and from (4.11) we obtain 

k k k k M i , M j ~  S , ^ T k = ( M i , M j ) s , ^ r  k 

f 
S t  ^ T k  

=J0"  dsa(X(s)) 
"~0 

=Ju.(;So'dsa(X(s)))A(frkdsa(X(s)))  

= J o . ( t  ^ Tk), t>~0 (4.22) 

Therefore Lemma 5 can be applied with the ~s-s topping  time Tk ( k e  N). 
Hence for any k �9 N there exists a standard Brownian motion B k on R d 
such that 

mk(t ^ Tk)=fs ^ rkBk(ds).v/ra(X(s)), t>>.O (4.23) 

(4.16) and (4.23) imply (4.3), and the proof of Lemma 4 is finished. 
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In order to deduce Proposition 1 from (4.3) we introduce the notation 

B ( t ) =  Y'. (Bk(t A Tk)--Bk(t ^ Tk-t)), t>~O 
k~ l  

L ( t ) =  ~ (Lk(t A Tk)--Lk(t A Tk_,)), t>~O 
k~ l  

Then B is a standard Brownian motion and L is the continuous additive 
functional which is associated to a. This follows because the Fukushima 
decomposition (4.4) is unique and therefore 

BJ(t A Ts)=Bk(t A TS) and LS(t A Tj)=Lk(t A Tj), t>~O 

for j ~< k ~ N. Since 

Bk(t A Tk)=B(t ^ Tk) and Lk(t ^ Tk)=L(t ^ Tk), t>~O, k e N  

(4.3) becomes 

fl X(t A Tk)-X(O)= B(ds) v/-a(X(s)) 

1 fs +~(a+--a ). L(ds) v(X(s)), t~O 

From this we get Proposition 1 in the limit k ~ or. 

. P R O O F  O F  P R O P O S I T I O N  2 

Step 1. Tranformation of X(t). Let F/: R d--* R (1 ~< i ~< d) satisfy the 
following three conditions: 

F i is continuous and periodic 

AF ~ (x) = 0, 

t / OFi~ ( v i + O F i ~  ,lx), 

We define 

(5.1) 

xr • (5.2) 

x~OD • (5.3) 

f~(x)=xi+ Fi(x), 1 <~i<~d (5.4) 
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F= (F 1 ..... Fd), f =  (fl  ,..., fd) (5.5) 

If f belonged to Co 2, we could apply It6's lemma to f (X( t ) )  and we would 
obtain that 

f ( X ( t ) ) = X ( t ) + F ( X ( t ) ) ,  t>~O 

is a martingale, since F was just so chosen. However, It6's lemma cannot 
be used. In the next step we therefore replace f by appropriately defined 
functions f~  k = ( f l  ,--', fkd) and apply Fukushima's decomposition to these fk  
(keN) .  

Step 2. Application of Fukushima's decomposition. Let k e N be 
given and define fk  k k = ( f l  ..... fd)  as follows. Using the notation Qk= 
(--k, +k) d as before, we choose e > 0  so that 

([ - k  - e ,  k + e]a\Qk) c~ OD • = (~ 

and a C~'-function ~ok: Rd--* R so that 

1, XeQk 
~0k(x) = 0, x E R d \ [ - - k - e , k + e ]  d 

and let 

f k (x )  = (Xi + Fi(x)) �9 ~*(x), x e R d (5.6) 

For v e H1(R d) we then obtain 

8 ( f k ,  V) = (ak ,  6), l<.i<~d, k e N  (5.7) 

where g is a quasicontinuous modification of v and the measure /~  is given 
by 

1 
p~(dx) = - ~  a(x) . Af~'(x) . 2(dx) 

1 k + ~ ( a +  Ofk Ofi 
"--Ov + - a_ ~ v _ /  (x) .  a(dx) (5.8) 

This follows since Green's formula can be applied because ofk/Ov• exists 
on OD• and Af k exists on Rd\OD• 
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Because of (5.7) the assumption of Theorem 5.3.2. in ref. 6 is satisfied 
for the functions f ~  ( 1 ~< i ~< d, k e N). For  k e N, 1 ~< i ~< d, we therefore 
obtain the decomposit ion 

f k (X( t ) ) - - f~ (X(O) )=Mk( t )+N~( t ) ,  t>~O (5.9) 

where Mk(t )=(M~(t )  ..... Mkd(t)), t>~O, is a continuous martingale with 
quadratic variation 

k Ii Mj ) ,  = ds a(X(s)) vfki(X(s)), vfk(X(s)),  t~>0, l <<. i, j <<. d 

(5.10) 

ElX(t)lZ<~const.t ( t~>l)  

Because of the boundedness of F we therefore obtain 

lim -1 E[Xi(t) .  Xj(t)]  

= lim -1 E[{f~(X(t))- f~(X(O))}  �9 { f j (X(t))-- f j (X(O))}] 
, -  o~ t 

(5.12) 

Furthermore,  by means of Proposit ion 1 it is not difficult to see that 
E[supo<s<,  IX(s)[ 2] < oo (t >0) .  Hence by (5.6), (5.10), and (5.11) we get 
for any t > 0 

E[ { f,.(X(t)) - f~ (X(0) )}  �9 { f j (X( t ) )  -- f j (X(0))} ] 

= lim E[{f~(X(t  ^ Tk))- f i (X(O))}  �9 {f j (X(t  ^ Tk))--fj(X(O))}] 
k ~ cto 

= lim E [ { f k ( X ( t  A Tk) ) - - f k (x (0) )} -  { f k (X( t  ^ Tk))--f~(X(0))} ] 
k ~ o o  

- lim E[Mk(t  ^ Tk).M~'(t ^ Tk)] 
k ~ o o  

= lim E< M~, M~ >, ^ r, 

and where N~ is the continuous additive functional with associated 
measure p~'. Since supp p~ c~ Qk = ~ by definition of F, we obtain from 
(5.9) 

f~(X( t  ^ Tk) ) - - fk (X(O))=Mk( t  ^ Tk), t>~O (5.11) 

if X(0) E Qk and Tk = inf{s > 0: X(s) ~ OQk}. 

Step 3. Calculation of the asymptotic covariance of SBM. By 
Proposit ion 1 it is easy to verify that there exists a constant such that 
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0r' ar,  

=t. dxa(x) ~ r Oxzj (x) 
O, I ]a  l =  I 

= t .  r dxa(x)  ~i:+ (x) (5.13) o[ 0, I ]  d 

where the last line is obtained by partial integration. 
Equations (5.12) and (5.13) prove Proposition 2, 

( 1 ~< i ~< d), defined by 

Ui(X) = --  [ x i + r i ( x ) ] ,  x E  R a 

satisfies ( 1.4)-(1.6), and 

I O F i \  

f<o 
[ ox, j~ " 

=Ito,~lsdx - a ( x )  =a o. (1 <<.i,j<<.d) 

6. PROOF OF PROPOSITION 3 

Using the abbreviation 

f2 Ai(t)= L(ds)vi(X(s)), t>~O, l <~i~d (6.1) 

we obtain from Proposition 1 

EES:Bi(d')vla(X(s))'S:Bj(ds)~I~(X(s)) } 
= E [  { [ X i ( t )  - X , ( 0 ) ]  - -  �89 + - a _  ) .  A , ( t ) }  

�9 { [X: ( t ) -X: (O)] - - �89  l<~i,j<~d (6.2) 

In order to compute the right-hand side of (6.2) we use ~5) 

E[{X, ( t ) - -X , (O)} .A j ( t ) ]=O,  t>~O, l <.Ni, j<~d 

To see (6.3), we consider the time-reversed 
0 ~< s ~ t (t > 0 fixed), the corresponding local 

since ui: R d---* R 

(6.3) 

process 8(s) = X(t - s), 
time s 0 ~< s ~< t, and 
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A(t) =~s  By Lemma 2(ii) the transition density of SBM is 
symmetric; hence 

E[ { X;(/) - X~(0)}. Aj(t)] = E[ { • ( t )  - ~,.(0)}- A j(/)]  

= E [  { X i ( 0 )  --  X,(t)}. , ' /j(t) ] 

= E[ { X,(0) -- X,(t)}. Aj(t) ] 

since A(t) is invariant by time reversal. This shows (6.3). From (6.2) and 
(6.3) we obtain 

E[{X,(t)-  Xi(0)}. { X}(t) - Xj(0)} ] 

-- �88 - a_)2. E[ A,(t). Aj(t)] (6.4) 

and therefore 

tlimo~ It E[ Xi(t). Xj(/)] 

= J~ ft o. t3a dxa(x) -~  (a*-a-)2" ,-o~lim 1E[Ai(t).Aj(t) ] t  

= ( a ) - Jo .  - 1  (a + - - a_ )  2- ,4oolim It E[Ai(t). Aj(t)] (6.5) 

The transition density of SBM is symmetric and has Lebesgue measure as 
invariant measure. Hence 

E[ Ai(t ) �9 Aj(t) ] 

= . dx f~ ds, fa(dy)fi,,(x, y)vi(y ) . fl t̀  ds 2 f a(dz)ff~2_s,(y, z)vj(z) f[0 I] d 

+ ~ dX fodS, f a(dy) fi,,(x,y) vj(y) 
[o, I ]d 

" flt dsz f a.(dz) fis2-s,(Y,Z) Vi(Z) 

= 2 . f a(dy) vi(y) f~ ds ( t -  s) f a(dz) ps(y, z) b(z) 

=2. f a(dy) vi(Y) fods( t -s)  f tr(dz) [fi ,(y,z)- l] vj(z) (6.6) 
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Because of Lemma 3, Lebesgue's theorem of dominated convergence can be 
applied, and we obtain 

1 
E[ Ag( t) . Aj(t)] = 2. ~o I ~  ds ~ a(dy) a(dz) ~s(y, z) vi(y) v;(z) (6.7) lim 

,~o~ t 

Equations (6.5) and (6.7) prove Proposition 3. 

7. REMARKS AND OPEN PROBLEMS 

7.1. Extension of the Theorem to General Ergodic Media 

We believe that the Theorem can be extended from periodic to general 
ergodic media. More precisely, let D_ be a random closed subset of R a 
which is spatially stationary and ergodic. Assume further that the surface 
which separates D_ and D+ = Ra\D_ is smooth and without self-intersec- 
tions. Let the microscopic conductivity be given by a = a_  �9 1 o_ + a+ �9 1D. 
with a• >0.  The SBM, moving in D• with variance a• , is defined 
similarly as in the periodic case. We denote its (random) transition density 
by ps(x, y) (s > 0; x, y e Ra). Then the analog to the representation formula 
(1.19) should be 

~o.=(a).~g-�89 ~ (7.1) 

where ( . )  denotes averaging with respect to the medium, ( . ) o  = 
( .  10 ~ c3D • ) is the Palm measure of the measure ( . ) ,  and 

y = lim ]OD • c~ K[ 
KTR~ IKI 

is the specific surface of the boundary OD• 

7.2. Representation of a in Terms of the Boundary Process 

We consider the SBM as in Section 1 and denote by 

r(t)=sup{s>~O:L(s)<~t}, t~O 

the right continuous inverse of the boundary local time L. The process 
{~(s), s~>0}, defined by 

~(s) = )7(r(s)), s >i 0 (7.2) 
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is the boundary process of SBM on the torus. It is plausible that the 
representation formula (1.19) can be expressed in terms of the boundary 
process as follows: 

aiy = (a)  . ~u-  �89 + - a_)2. f ?  ds E,,[ vi(~(0)) - vj(~(s)) ] (7.3) 

To see this, we use in (1.19) the transformation s = z(s'), L(s) = L(r(s')) = s', 
and get 

ds f f  a(dy) a(dz) ff ,(y, z) vi(y) vj(z) 

= , l ~ n  f a(dy)vi(y) Io ds f a(dz) :,(y, z)vj(z) 

= ,limoo f a(dy)v,(y)Ey fo L(ds)vj(X(s)) 

f: = lim dsE,,[v,(X(O)), vj()7(~(s))) ll,(,)<,} ] 

If in the last line the interchange of the limit with integration could be 
justified, we would obtain (7.3). We have not yet shown the good mixing 
properties of the boundary process, which seem to be required for a 
rigorous proof of (7.3). 

7.3. Def in i t ion of S B M  by Means  of Excursions 

The intuitive description of SBM given in the introduction [cf. (0.3)] 
can be made precise by means of excursions. To show this, we adapt the 
corresponding construction of reflecting Brownian motion in ref. 8 and 
sketch the main steps of a pathwise construction of SBM. We assume that 
the given set C has a C3-boundary. We write C_ = C, C+ = (Rd/Zd)\C_ 
and construct the SBM {)7(s), s>~0} on the torus (Rd/Z d) in three steps 
as follows: 

Step 1. Construction of the boundary process ~(s), s>~0. The 
boundary process { ~(s), s >/0} is a pure jump process on OC• In order to 

822/80/I-2-I0 
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define its generator A, we consider a continuous function f :  OC+_ ~ R and 
the corresponding Dirichlet problem on the torus 

zlu(x) = O, x ~ (Rd/Za) \OC• 
u(x) = f(x),  x ~ O C +  (7.4) 

and denote the solution to (7.4) by ur 
Then 

. 0 a _ .  0v0--~_ (uf)] (7.5) 

We assume ~ is right continuous and denote the set of jump times by 

J =  {s>~0: ~(s-):~ ~(s)} (7.6) 

Stop 2. Description of the excursions { es, s ~ J}. According to res 8, 
there exist two point processes of excursions {e + , s>_-0} and {e j-, s~> 0}, 
respectively, which correspond to reflecting Brownian motion in the set C+ 
(with variance a+) and in the set C_ (with variance a_ ), respectively. For 
s ~ J we choose random signs p(s) ~ { _+ } (independently of each other, of 
the boundary process, and of the excursions) according to 

P(p(s)  = + ) - a+ (7.7) 
a_ + a +  

The excursions of SBM are then defined by 

e, = e p~'), s ~ J (7.8) 

Stop 3. Definition of SBM by means of the boundary process and of 
the excursions. Denote by lesl the lifetime of the excursion e, (s e J), define 

z(t) = ~ lesl, t>~0 
sEJn(O,t]  

and let L(t) ,  t>~O, be the inverse of 3. The SBM on the torus is then 
defined by 

f~(0), t = 0  

X(t)  = ~ ( L ( t ) ) ,  L( t )  q~ J 

~eL~t ) [ t - - r (L( t ) - ) ] ,  L ( t ) ~ J  

(7.9) 

This process is equivalent to the process which was defined in Section 2. 
The equivalence can be shown as in ref. 8 via the martingale problem for 
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SBM (see ref. 1 for the martingale approach to diffusion processes with 
singular coefficients). 

We conclude with a remark on the nature  of the stochastic differential 
equat ion (2.1). If the separating surface OC is smooth, SBM can be con- 
structed via excursions as indicated above. This suggests that in the smooth 
case Eq. (2.1) should hold in a strong sense, i.e., SBM should satisfy (2.1) 
with a s tandard Brownian mot ion  {B(s), s>~0} given in advance, in 
contrast  to the weak result of Proposi t ion 1. 
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